Classes of chromatically equivalent graphs and polygon trees

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Classes of chromatically unique graphs

Borowiecki, M. and E. Drgas-Burchardt, Classes of chromatically unique graphs, Discrete Mathematics Ill (1993) 71-75. We prove that graphs obtained from complete equibipartite graphs by deleting some independent sets of edges are chromatically unique. 1. Preliminary definitions and results In this paper we consider finite, undirected, simple and loopless graphs. Two graphs G and H are said to b...

متن کامل

CHROMATICALLY EQUIVALENT k-BRIDGE HYPERGRAPHS

An h-uniform hypergraph (h ≥ 2) H = (V, E) of order n = |V| and size m = |E|, consists of a vertex set V(H) = V and edge set E(H) = E , where E ⊂ V and |E| = h for each edge E in E . H is said to be linear if 0 ≤ |E ∩ F | ≤ 1 for any two distinct edges E,F ∈ E(H) [1]. Let P h,1 p denote the linear path consisting of p ≥ 1 edges E1, . . . , Ep such that |E1| = . . . = |Ep| = h, |Ek ∩ El| = 1 if ...

متن کامل

Chromatically Supremal Decompositions of Graphs

If G is a graph, a G-decomposition of a host graph H is a partition of the edges of H into subgraphs of H which are isomorphic to G. The chromatic index of a Gdecomposition of H is the minimum number of colors required to color the parts of the decomposition so that parts which share a common node get different colors. We establish an upper bound on the chromatic index and characterize those de...

متن کامل

Chromatic equivalence classes of certain generalized polygon trees, III

Let P(G) denote the chromatic polynomial of a graph G. Two graphs G and H are chromatically equivalent, if P(G) = P(H). A set of graphs S is called a chromatic equivalence class if for any graph H that is chromatically equivalent with a graph G in S, then H ∈S. Peng et al. (Discrete Math. 172 (1997) 103–114), studied the chromatic equivalence classes of certain generalized polygon trees. In thi...

متن کامل

Chromatically Unique Multibridge Graphs

Let θ(a1, a2, · · · , ak) denote the graph obtained by connecting two distinct vertices with k independent paths of lengths a1, a2, · · · , ak respectively. Assume that 2 ≤ a1 ≤ a2 ≤ · · · ≤ ak. We prove that the graph θ(a1, a2, · · · , ak) is chromatically unique if ak < a1 + a2, and find examples showing that θ(a1, a2, · · · , ak) may not be chromatically unique if ak = a1 + a2.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 1994

ISSN: 0012-365X

DOI: 10.1016/0012-365x(94)90033-7