Classes of chromatically equivalent graphs and polygon trees
نویسندگان
چکیده
منابع مشابه
Classes of chromatically unique graphs
Borowiecki, M. and E. Drgas-Burchardt, Classes of chromatically unique graphs, Discrete Mathematics Ill (1993) 71-75. We prove that graphs obtained from complete equibipartite graphs by deleting some independent sets of edges are chromatically unique. 1. Preliminary definitions and results In this paper we consider finite, undirected, simple and loopless graphs. Two graphs G and H are said to b...
متن کاملCHROMATICALLY EQUIVALENT k-BRIDGE HYPERGRAPHS
An h-uniform hypergraph (h ≥ 2) H = (V, E) of order n = |V| and size m = |E|, consists of a vertex set V(H) = V and edge set E(H) = E , where E ⊂ V and |E| = h for each edge E in E . H is said to be linear if 0 ≤ |E ∩ F | ≤ 1 for any two distinct edges E,F ∈ E(H) [1]. Let P h,1 p denote the linear path consisting of p ≥ 1 edges E1, . . . , Ep such that |E1| = . . . = |Ep| = h, |Ek ∩ El| = 1 if ...
متن کاملChromatically Supremal Decompositions of Graphs
If G is a graph, a G-decomposition of a host graph H is a partition of the edges of H into subgraphs of H which are isomorphic to G. The chromatic index of a Gdecomposition of H is the minimum number of colors required to color the parts of the decomposition so that parts which share a common node get different colors. We establish an upper bound on the chromatic index and characterize those de...
متن کاملChromatic equivalence classes of certain generalized polygon trees, III
Let P(G) denote the chromatic polynomial of a graph G. Two graphs G and H are chromatically equivalent, if P(G) = P(H). A set of graphs S is called a chromatic equivalence class if for any graph H that is chromatically equivalent with a graph G in S, then H ∈S. Peng et al. (Discrete Math. 172 (1997) 103–114), studied the chromatic equivalence classes of certain generalized polygon trees. In thi...
متن کاملChromatically Unique Multibridge Graphs
Let θ(a1, a2, · · · , ak) denote the graph obtained by connecting two distinct vertices with k independent paths of lengths a1, a2, · · · , ak respectively. Assume that 2 ≤ a1 ≤ a2 ≤ · · · ≤ ak. We prove that the graph θ(a1, a2, · · · , ak) is chromatically unique if ak < a1 + a2, and find examples showing that θ(a1, a2, · · · , ak) may not be chromatically unique if ak = a1 + a2.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Mathematics
سال: 1994
ISSN: 0012-365X
DOI: 10.1016/0012-365x(94)90033-7